Coupled convection and tidal dissipation in Europa’s ice shell
نویسندگان
چکیده
0019-1035/$ see front matter 2010 Elsevier Inc. A doi:10.1016/j.icarus.2009.12.028 * Corresponding author. E-mail addresses: [email protected] (L. Han), showman man). We performed 2D numerical simulations of oscillatory tidal flexing to study the interrelationship between tidal dissipation (calculated using the Maxwell model) and a heterogeneous temperature structure in Europa’s ice shell. Our 2D simulations show that, if the temperature is spatially uniform, the tidal dissipation rate peaks when the Maxwell time is close to the tidal period, consistent with previous studies. The tidal dissipation rate in a convective plume encased in a different background temperature depends on both the plume and background temperature. At a fixed background temperature, the dissipation increases strongly with plume temperature at low temperatures, peaks, and then decreases with temperature near the melting point when a melting-temperature viscosity of 10 Pa s is used; however, the peak occurs at significantly higher temperature in this heterogeneous case than in a homogeneous medium for equivalent rheology. For constant plume temperature, the dissipation rate in a plume decreases as the surrounding temperature increases; plumes that are warmer than their surroundings can exhibit enhanced heating not only relative to their surroundings but relative to the Maxwell-model prediction for a homogeneous medium at the plume temperature. These results have important implications for thermal feedbacks in Europa’s ice shell. To self-consistently determine how convection interacts with tidal heating that is correctly calculated from the time-evolving heterogeneous temperature field, we coupled viscoelastic simulations of oscillatory tidal flexing (using Tekton) to long-term simulations of the convective evolution (using ConMan). Our simulations show that the tidal dissipation rate resulting from heterogeneous temperature can have a strong impact on thermal convection in Europa’s ice shell. Temperatures within upwelling plumes are greatly enhanced and can reach the melting temperature under plausible tidal-flexing amplitude for Europa. A pre-existing fracture zone (at least 6 km deep) promotes the concentration of tidal dissipation (up to 20 times more than that in the surroundings), leading to lithospheric thinning. This supports the idea that spatially variable tidal dissipation could lead locally to high temperatures, partial melting, and play an important role in the formation of ridges, chaos, or other features. 2010 Elsevier Inc. All rights reserved.
منابع مشابه
Coupled convection and tidal dissipation in Europa’s ice shell using non-Newtonian grain-size-sensitive (GSS) creep rheology
0019-1035/$ see front matter 2010 Elsevier Inc. A doi:10.1016/j.icarus.2010.11.034 ⇑ Corresponding author. E-mail addresses: [email protected] (L. Han), showman man). We present self-consistent, fully coupled two-dimensional (2D) numerical models of thermal evolution and tidal heating to investigate how convection interacts with tidal dissipation under the influence of non-Newtonian grain-size-sensit...
متن کاملCoupled Convection and Tidal Dissipation in Europa’s Ice Shell Using Grain Boundary Sliding Creep Rheology
متن کامل
Tidal Dissipation in Europa’s Ice Shell with a Heterogeneous Temperature Distribution
Introduction: Heterogeneous tidal dissipation in Europa’s ice shell has been suggested as a mechanism to generate tectonic features on the surface [1-3]. Several authors have proposed that Europa’s pits, uplifts, and chaos terrains resulted from surface deformation by convection within the ice shell [1,4-5]. If tidal heating were temperature dependent, as predicted for a homogeneous material wi...
متن کاملNumerical Simulations of Convection in Europa’s Ice Shell: Implications for Surface Fea-
Europa’s icy surface displays numerous small (530 km-diameter) pits, spots, and uplifts with topography of 100-300 m [1-5]. Although several formation models exist for these features, the most popular is that they result from deformation of the lithosphere by convection in the underlying ice [1,2,6,7,13]. However, it is unclear whether convection can produce topography of the appropriate wavele...
متن کاملConvective–conductive transitions and sensitivity of a convecting ice shell to perturbations in heat flux and tidal-heating rate: Implications for Europa
We investigate the response of conductive and convective ice shells on Europa to variations of heat flux and interior tidal-heating rate. We present numerical simulations of convection in Europa’s ice shell with Newtonian, temperature-dependent viscosity and tidal heating. Modest variations in the heat flux supplied to the base of a convective ice shell, F , can cause large variations of the ic...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009